Search results for "Radiation resistance"
showing 8 items of 8 documents
Structure of amorphous SiO 2 nanoparticles probed through the E′ γ centers
2011
We report an experimental investigation by electron paramagnetic resonance (EPR) spectroscopy on the properties of the E′ γ centers induced by β-ray irradiation in nanoparticles of amorphous SiO 2 (fumed silica) with mean diameters from 7 up to 40 nm. We found that the E′ γ centers are induced in all the fumed silica types in the dose range 4-400 kGy. They are characterized by an EPR line shape similar to that observed in common bulk silica materials independently on the particle diameter. Moreover, the E′ γ center concentration decreases on decreasing of the particle size for each given dose. Our findings are interpreted in terms of a shell-like model of nanoparticles in which it is assume…
Radiation resistance and optical properties of lead fluoride Cherenkov crystals
1998
Abstract Optical properties of large size lead fluoride (PbF 2 ) crystals of three different manufacturers and their degradation caused by 60 Co γ-radiation have been investigated. Transmission losses have been systematically studied at absorbed energy doses between 0.1 and 7 kGy. Several radiation induced absorption bands have been observed. Optical bleaching with light of wavelengths ≳365 nm has been found very effective to restore the original characteristics even after repeated irradiations. This observation together with the high density and the ultraviolet extended transmission make PbF 2 an excellent choice for high rate and high resolution e.m. calorimetry.
Radiation resistance of nanolayered silicon nitride capacitors
2020
Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
2016
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent $Lu_{3}Al_{5}O_{12}$ single crystals. Particular emphasis has been placed on irradiation with $\sim$2 GeV heavy ions ($^{197}Au, ^{209}Bi, ^{238}U$, fluence of 10$^{12}$ ions/cm$^{2}$) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the c…
O2-Loading Treatment of Ge-Doped Silica Fibers: A Radiation Hardening Process
2016
International audience; The effects of a high-pressure O2-loading treatment on the radiation response of Ge-doped optical fibers (OFs) were investigated. We found that the incorporation of high concentration of interstitial molecular oxygen remarkably enhances the resistance to ionizing radiation of Ge-doped OFs in the UV-Visible domain and, at the same time, improves the transmission of UV light in the unirradiated OF sample. By comparison with previously reported results, the O2-loading treatment turned out to increase the radiation resistance of Ge-doped OFs more efficiently than F or Ce codoping. The understanding of such amelioration relies in basic radiation-induced mechanisms that we…
The Influence of a Magnetized Plasma Column on the Radiation Characteristics of a Strip Loop Antenna
2014
The radiation characteristics of a circular loop antenna located on the surface of an open waveguide in the form of an axially magnetized plasma column are studied using the rigorously obtained current distribution of such an antenna. The radiation resistance of the antenna excited by a time-harmonic external voltage is obtained for the case where the plasma inside the column is resonant. The distribution of the radiated power over the spatial spectrum of the excited waves is found and discussed.
Radiation hardening techniques for rare-earth-based optical fibers and amplifiers
2012
Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern …
Ab initio modelling of the Y, O, and Ti solute interaction in fcc-Fe matrix
2018
Abstract Strengthening of the ODS steels by Y2O3 precipitates permits to increase their operation temperature and radiation resistance, which is important in construction materials for future fusion and advanced fission reactors. Both size and spatial distribution of oxide particles significantly affect mechanical properties and radiation resistance of ODS steels. Addition of the Ti species (present also as a natural impurity atoms in iron lattice) in the particles of Y2O3 powder before their mechanical alloying leads to the formation of YTiO3, Y2TiO5, and Y2Ti2O7 nanoparticles in ODS steels. Modelling of these nanoparticle formation needs detailed knowledge of the energetic interactions be…